

JBA

Final Report

September 2023

www.jbaconsulting.ie

Dublin City Council

Civic Offices,

Wood Quay,

Dublin 8

Co. Dublin

JBA Project Manager

Ross Bryant Unit 24 Grove Island Corbally, Limerick, Ireland

Revision history

Revision Ref/Date	Amendments	Issued to
S3-P01/20.03.23	Initial Draft Report	Dublin City Council
S3-P02/24.03.23	Draft for Consultation	Dublin City Council
S3-P03/28.03.23	For Public Consultation	Dublin City Council
S3-P04/12.05.23	Final Report	Dublin City Council
S3-P05/25.05.23	Final Report	Dublin City Council
S3-P06/08.09.23	Final Report	Dublin City Council

This report describes work commissioned by Dublin City Council.

Prepared by	Paul Browne BEng (Hons) MIEI
	Engineer
Reviewed by	Michael O'Donoghue BEng CEng MIEI
	Associate Director

Purpose

This document has been prepared as an SWMP for Dublin City Council. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to Dublin City Council.

Copyright

 $\ensuremath{\mathbb{C}}$ JBA Consulting Engineers and Scientists Limited 2023.

Carbon footprint

A printed copy of the main text in this document will result in a carbon footprint of 58g if 100% post-consumer recycled paper is used and 173g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is aiming to reduce its per capita carbon emissions.

JBA

Contents

Introduction	1
Terms of Reference	1
Background	1
Aims & Objectives	2
Report Structure	2
Technical Principles	2
Legislative Requirements	4
Existing Infrastructure	6
Existing Stormwater Network	6
Fluvial Data	7
Dublin FloodResilienCity Pluvial Mapping	12
CFRAM	13
PFRA & NIFM	13
JBA Hydraulic Modelling	13
Finglas Stream Topography	15
Proposed Green Infrastructure	16
Rainwater Management/GI philosophy	16
Green Infrastructure Design	17
Conclusion	26
A - Drawings	27
K B – Calculations	28
	Terms of Reference Background Aims & Objectives Report Structure Technical Principles Legislative Requirements Existing Infrastructure Existing Stormwater Network Fluvial Data Dublin FloodResilienCity Pluvial Mapping CFRAM PFRA & NIFM JBA Hydraulic Modelling Finglas Stream Topography Proposed Green Infrastructure Rainwater Management/GI philosophy Green Infrastructure Design Conclusion & A - Drawings

JBA consulting

List of Figures

Figure 1-1 Jamestown SDRA Lands (Source: DCC)	1
Figure 2-1 DCC Surface Water Network (Source: DCC)	6
Figure 2-2 GDSDS Infoworks Model of Finglas Stream (Source: DCC)	7
Figure 2-3 Finglas Stream Overview (Source: GDSDS)	8
Figure 2-4 Watercourses through Jamestown Lands (Source: GDSDS and Site Walkover	r) 9
Figure 2-5 Finglas Stream Open Channel Section (Facing East)	9
Figure 2-6 Eastern Drainage Connection Open Channel Section (Facing West)	10
Figure 2-7 FloodResilienCity Flood Map	12
Figure 2-8 Finglas Stream Indicative Flood Zone Mapping	14
Figure 2-9 Finglas Stream Climate Change Flood Mapping 1% AEP	14
Figure 2-10 Area Overview with LiDAR and Indicative Flow Paths and Depressions	15
Figure 3-1 Green Infrastructure open swale (Source: biocycle.net)	17
Figure 3-2 Typical Green Infrastructure Corridor (Source: City Edge Project, DCC)	18
Figure 3-3 Proposed Drainage Areas	19
Figure 3-4 1% AEP event attenuation requirements	25
Figure 3-5 Indicative drainage connection from Jamestown Lands to existing network o	n
Jamestown Road	25

List of Tables

Table 1-1 Return Periods & Annual Exceedance Probabilities	2
Table 1-2 Future Condition Adjustments	3
Table 2-1 Summary of Recent Flood Events in Dublin	10
Table 3-1 GI Requirements	16
Table 3-2 Calculation of QBAR for each drainage area	21
Table 3-3 Calculation of cumulative QBAR for drainage areas linked in series	22
Table 3-4 Calculation of QBAR for each drainage area as a whole	22
Table 3-5 Attenuation Simulation Requirements - 100-year event (1% AEP)	23
Table 3-6 Attenuation Simulation Requirements - 100-year event (1% AEP)	24

JBA consulting

Abbreviations

1D	One Dimensional (modelling)
2D	Two Dimensional (modelling)
AEP	Annual Exceedance Probability
AFA	Area for Further Assessment
CFRAM	Catchment Flood Risk Assessment and Management
DCC	Dublin City Council
DCDP	Dublin County Development Plan
DTM	Digital Terrain Model
EPA	Environmental Protection Agency
FEH	Flood Estimation Handbook
FFL	Finished Floor Level
FRA	Flood Risk Assessment
FRMP	Flood Risk Management Plan
FRR	Flood Risk Review
FSU	Flood Studies Update
GIS	Geographical Information System
HEFS	High End Future Scenario
HPW	High Priority Watercourse
JFLOW	2-D hydraulic modelling package developed by JBA
JT	Justification Test
LA	Local Authority
MPW	Medium Priority Watercourse
MRFS	Medium Range Future Scenario
OPW	Office of Public Works
OSi	Ordnance Survey Ireland
PFRA	Preliminary Flood Risk Assessment
RSES	Regional Spatial and Economic Strategy
RMS	Rainwater Management Strategy
SEA	Strategic Environmental Assessment
SFRA	Strategic Flood Risk Assessment
SuDS	Sustainable Drainage Systems

1 Introduction

1.1 Terms of Reference

JBA Consulting was appointed by Dublin City Council to prepare the Stormwater (Rainwater) Management Strategy for the Jamestown Lands Masterplan. Hereafter, this will be referred to as an RMS.

1.2 Background

In June 2021, DCC re-zoned 43Ha of industrial lands between Jamestown Road and St. Margarets Road/McKee Avenue, Finglas from Land Use Zoning Objective Z6 to Land Use Zoning Objective Z14 and designated the lands a Strategic Development and Regeneration Area (SDRA). The objective that underpinned this decision was "to seek the social, economic and physical development and/or rejuvenation of an area with mixed-use, of which residential and Z6 would be the predominant uses". These lands are hereafter defined as the Jamestown Lands. These lands have subsequently been designated as part of an extended SDRA in the Dublin City Development Plan 2022-2028 The extent of the lands is identified in Figure 1-1.

Figure 1-1 Jamestown SDRA Lands (Source: DCC)

1.3 Aims & Objectives

The purpose of the Rainwater Management Strategy (RMS) is to develop a strategy for incorporating nature-based solutions into the control of surface water run-off. The Plan is to be in accordance with and founded on the principles of "*Nature-base Solutions to the Management of Rainwater and Surface Water Run-off in Urban Areas: Water Sensitive Urban Design Best Practice Interim Guidance Document.*" This document promotes the approach of assessing urban area drainage on the following three key pillars:

- Environmental: The management of water quality in accordance with the EU Water Framework Directive (2000/60/EC)
- Climate Change: Incorporating projected increased intensity in rainfall events, and introducing both climate resilience and climate adaptability into the Urban Drainage design
- Flood Risk: The urgent need to address the issue of ever-increasing impermeable urban areas and the associated increase in surface water runoff that it generates.

This report will thus develop and RMS that fully integrates with the green infrastructure strategy of the whole developable lands, and not be a standalone hydraulic engineering solution. The RMS will promote sustainable habitat, improve water quality, provide social amenity as well as reducing the pass-forward flows to downstream watercourses.

1.4 Report Structure

The report follows three stages:

- An appraisal of the existing stormwater network and the draft Masterplan layout.
- Definition of SuDS design philosophy for the study area
- Development of Green Infrastructure elements
- Definition of RMS guidance notes for prospective users

All JBA drawings that are included in the report are found within Appendix A. Extended hydraulic calculations are presented in Appendix B.

1.5 Technical Principles

1.5.1 Return Periods

The probability of a flood event is classified by its annual exceedance probability (AEP) or return period (in years). A 1% AEP flood will occur on average once every 100 years and has a 1 in 100 chance (or 1%) of occurring in any given year.

AEP can be a helpful concept as return period is often misunderstood to be the period between large flood events rather than an average recurrence interval. Annual exceedance probability is the inverse of return period as shown in Table 1-1.

Return Period (Years)	Annual Exceedance Probability (%)
2	50
10	10
30	3.3
50	2
100	1
200	0.5

Table 1-1 Return Periods & Annual Exceedance Probabilities

1.5.2 Climate Change

The Planning Guidelines (originally published in 2009) recommend that a precautionary approach to climate change is adopted due to the level of uncertainty involved in the potential effects.

OPW climate change guidance is documented in the "Flood Risk Management Climate Change Sectoral Adaptation Plan", and recommends two climate change scenarios for consideration. These are the Mid-Range Future Scenario (MRFS) and the High-End Future Scenario (HEFS). The MRFS is intended to represent a "likely" future scenario based on the wide range of future predictions available. The HEFS represents a more "extreme" future scenario at the upper boundaries of future projections. Based on these two scenarios the OPW recommended allowances for climate change are given in Table 1-2.

	MRFS	HEFS	
Extreme Rainfall Depths	+20%	+30%	
Flood Flows	+20%	+30%	
Mean Sea Level Rise	+500mm	+1000mm	
Land Movement	-0.5mm / year*	-0.5mm / year*	
Urbanisation	No General	No General	
	Allowance -	Allowance -	
	Review on Case	Review on Case	
	by Case Basis	by Case Basis	
Forestation	-1/6 Tp**	-1/3 Tp**	
		+10% SPR***	

Table 1-2 Future Condition Adjustments

Notes:

Applicable to the southern part of the country only (Dublin - Galway and south of this)

** Reduce the time to peak (Tp) by a third; this allows for potential accelerated runoff that may arise as a result of drainage of afforested land

*** Add 10% to the Standard Percentage Runoff (SPR) rate; this allows for increased runoff rates that may arise following felling of forestry

DCC produced the "Sustainable Drainage Design & Evaluation Guide" in 2021. This states that "SuDS design must demonstrate site containment or surface runoff for design rainfall intensities with additional 20% uplift for climate change." It also notes that this climate change allowance should be considered for both attenuation storage and conveyance calculations. This % uplift on rainfall aligns with the MRFS stated by the OPW. This is the % uplift that has been applied for the proposed GI within this study area. This is key overarching document with respect to all Sustainable Drainage Design for all DCC lands. The Jamestown RMS isn't intended to replace or supersede this but is intended to provide additional specifics where required on how this existing guidance is to be applied to the Jamestown Lands.

1.6 Legislative Requirements

1.6.1 Water Framework Directive (WFD) (2000/60/EC)

This is a European Parliament Directive and of the Council establishing a framework for Community action in the field of water policy. This directive is concerned with the protection of the aquatic ecosystem by preventing any further deterioration in status of waters, groundwater and water dependent ecosystems and where necessary the restoration of the water body, to achieve a 'good' condition. The status is based on both the ecological status as well as the natural chemical and physical characteristics. In addition to qualitive targets, the Directive also promotes the sustainable use of water resources and most notably, the elimination of the discharge of specific hazardous substances.

The legislation places onus upon stakeholders, including both the polluters and regulators, to ensure all appropriate measures are taken to protect the environment from risk.

This RMS aims to bring the WFD to the forefront of the urban drainage strategy.

1.6.2 EU Floods Directive

The founding principles for flood management throughout Ireland are based on the EU Floods Directive. The Office of Public Works are the national authority for the EU Floods Directive in Ireland. DCC have incorporated the objectives of the Catchment Flood Risk Assessment and Management Programme into its own development plan policies. These are defined under SI13 through to SI21. With respect to the stormwater drainage in Jamestown, SI21 is the most relevant policy.

SI21: To minimise flood risk arising from pluvial (surface water) flooding in the City by promoting the use of natural or nature-based flood risk management measures as a priority, by requiring the use of sustainable drainage systems (SuDS) to minimise and limit the extent of hard surfacing and paving, and requiring the use of sustainable drainage techniques, where appropriate, for new development or for extensions to existing developments, in order to reduce the potential impact of existing and predicted flooding risk and to deliver wider environmental and biodiversity benefits, and climate adaption.

1.6.3 The Planning & Development Act 2000

This gives local government power of sanction regarding acceptance, or otherwise, of developer proposals. This is generally enacted through defined objectives in the local authority's County/City Development Plan.

The Dublin City Development Plan 2022-2028 contains overarching Green Infrastructure principles, as well as objectives specific to Jamestown.

General SuDS policies are identified within SI22 through to SI26. These are to applied to all developments in Jamestown.

From these policies, SI22 sets out the approach to all Sustainable Drainage Systems.

SI22: To require the use of Sustainable Drainage Systems (SuDS) in all new developments, where appropriate, as set out in the Greater Dublin Strategic Drainage Study (Vol 2: New Development)/ Greater Dublin Regional Code of Practice for Drainage Works and having regard to the guidance set out in Nature-based Solutions to the Management of Rainwater and Surface Water Runoff in Urban Areas, Water Sensitive Urban Design Best Practice Interim Guidance Document (DHLGH, 2021). Sustainable Drainage Systems (SuDS) should incorporate nature-based solutions and be designed in accordance with the Dublin City Council Sustainable Drainage Design & Evaluation Guide (2021) which is summarised in Appendix 12. SuDS should protect and enhance water quality through treatment at source while enhancing biodiversity and amenity.

SI23 sets out the requirements for green/blue roofs. This requires all new developments with roof areas in excess of 100 sq. metres to provide for a green blue roof designed in accordance with DCC's own Green Blue Roof Guide (2021). This will be of particular importance to Jamestown where blue roof attenuation will need play a significant role.

SI25 is relevant to this exercise, stating the requirement to produce this SWMP.

SI25: To require the preparation of a Surface Water Management Plan as part of all new developments in accordance with the requirements of Appendix 13 – the Council's Surface Water Management Guidance.

These are complemented by Green Infrastructure policies GI1-8. The two key policies are:

GI2: To develop an interconnected green infrastructure network of strategic natural and semi-natural areas with other environmental features including green spaces, rivers, canals, the coastal and marine area, and other physical features including streets and civic spaces that supports ecological, wildlife, and social connectivity.

GI5: To integrate urban greening features including nature-based solutions into the existing public realm where feasible and into the design of public realm projects for civic spaces and streets.

This imposes a requirement to create multi-purpose green space, utilising nature-based drainage solutions as part of a green network.

This will be the intention for Jamestown, where the inter-connected green infrastructure currently presented in the draft Masterplan will also serve the purpose as stormwater corridors where possible. These corridors will be considered based on the DCC Sustainable Drainage Design & Evaluation Guide.

Note, individual site will be required to attenuate their own run-off to the requirements set out in the existing DCC guidelines. The public spaces and green corridors will attenuate their own run-off, and be used for conveyance through the development.

A key requirement for attenuation identified under SDRA 3 is:

• Future Developments on the subject lands shall allow for the control of outflow to the River Tolka, with surface water discharges limited to 0-2l/s/ha for the 1 in 100 year storm event, including an additional 20-30% to allow for climate change.

This broadly aligns with the GDSDS Requirement for River Flood Protection (Criterion 4), which states Maximum discharge rate of QBAR or 2l/s/ha, whichever is the greater, for all attenuation storage where separate "long term" storage cannot be provided.

In order to align with the GI policies stated earlier, some attenuation will need to be considered as part of the integrated green infrastructure to attenuate flows from public realm surfaces. Individually developed sites will attenuate their own flows with their individual footprints.

2 Existing Infrastructure

2.1 Existing Stormwater Network

Dublin City Council provided the local stormwater network in GIS format to JBA Consulting. A review shows the network is largely incomplete through the Jamestown Lands. Refer to Figure 2-1. Key features such as the route of the Finglas Stream culvert through the Jamestown Lands are missing from the network. These network elements are under private control and have not been taken in charge by Dublin City Council.

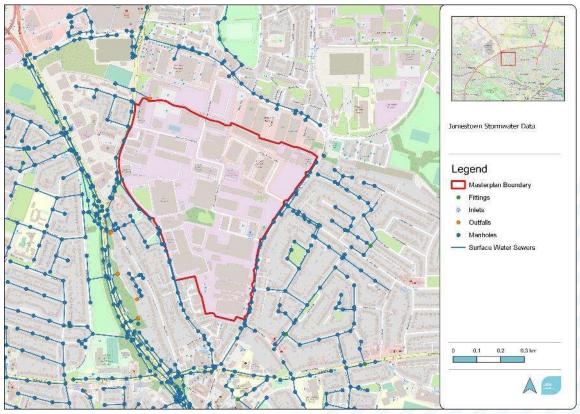


Figure 2-1 DCC Surface Water Network (Source: DCC)

However, the GDSDS Infoworks model files were provided to JBA Consulting. A review shows the Finglas Stream culvert has been captured through the Jamestown Lands. Refer to Figure 2-2.

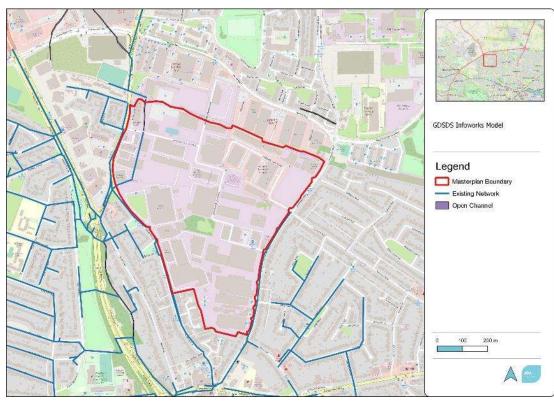


Figure 2-2 GDSDS Infoworks Model of Finglas Stream (Source: DCC)

2.2 Fluvial Data

2.2.1 Finglas Stream

The main watercourse traversing the Jamestown Lands is the Finglas Stream. The Greater Dublin Strategic Drainage Strategy (GDSDS) studies identified that the Finglas Stream originates north of the M50 as a series of undefined channels. The stream is culverted under the M50 and through the Charlestown Shopping Centre. Flowing in a general north-south direction, the Finglas Stream enters the Jamestown Lands via a c.700mmX1230mm culvert along the northern boundary before discharging to an open channel behind a series of warehouses. This open channel at present is severely overgrown and silted, with visible fly-tipping. The channel dimensions are c.3m wide by c.1m depth to bed level. The Finglas Stream gets re-culverted c.120m to the south as it passes under the Jamestown entrance road beside Van Signs Ltd. This culvert is 1200mmØ circular and runs for c.260m, emerging from the Jamestown Lands at the roundabout on St. Margaret's Road and McKee Avenue. The culvert goes through a series of transitions between circular and rectangular shapes before discharging to open channel beside the R135 / Finglas Bypass. The Finglas Stream goes through transitions between open channels and culverts before discharging to the River Tolka via bifurcation. The catchment area at the Finglas Stream outfall is approx. 1,080ha (10km²). Refer to Figure 2-3 for an overview of the Finglas Stream.

Figure 2-3 Finglas Stream Overview (Source: GDSDS)

2.2.2 Eastern Drainage Connection

Following a site walkover carried out on 25 January 2023, it was identified that there is an additional culvert traversing the Jamestown Lands falling in a general east-west direction (hereafter known as the Eastern drainage connection) and linking into the Finglas culvert to the south of the Manhattan Peanuts factory.

The culvert is not presently mapped, but initial investigations (from DCC) confirm 400mm diameter within the Manhattan Peanuts Site. It is presumed that the culvert drains the Jamestown Lands to the east of the site.

During the site walkover, an open drain was identified along the east boundary of the Jamestown Lands with Jamestown Road. The drain was overgrown, has been partially infilled but seemed to have a small diameter pipe (circa 400mm diameter) inserted.

A review of historic mapping identified the drain falling along plot boundaries towards the Finglas Stream, therefore, it is presumed the drain is positively drained to the Finglas Stream via the unmapped culvert and drains the eastern section of the Jamestown Lands. Much of the drain has been filled in, and therefore the watercourse is presumably culverted. Refer to Figure 2-4 for an overview of the watercourses through the Jamestown Lands.

It has been deduced that this drain is a stormwater infrastructure element, and not an existing watercourse. Therefore, it does not immediately inherit the same protections afforded to a recognised existing watercourse. There is, however, the intention to deculvert this infrastructure and create an east-west watercourse that will convey flows to the Finglas Stream, forming part of the Green Infrastructure.

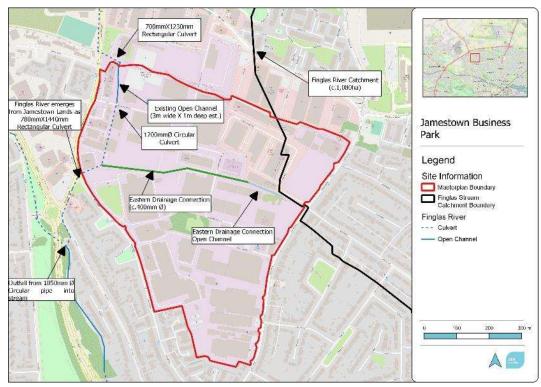


Figure 2-4 Watercourses through Jamestown Lands (Source: GDSDS and Site Walkover)

Figure 2-5 shows the open channel along the Finglas Stream south of the ESB Archives. Figure 2-6 shows the open channel section along the Eastern drainage connection.

Figure 2-5 Finglas Stream Open Channel Section (Facing East)

Figure 2-6 Eastern Drainage Connection Open Channel Section (Facing West)

2.2.3 Historic Flooding

Finglas is only mentioned in the pluvial flood events of 2008 and 2009. Table 2-1 provides details of recent flood events that have impacted on Dublin City, arising from a range of sources but primarily fluvial, pluvial and coastal. Finglas is only mentioned in the pluvial flood events of 2008 and 2009.

Table 2-1 Summary of Recent Flood Events in Dublin¹

Date	Source of Flooding	Areas impacted
3 January 2014	Coastal: Highest tide ever 3.014m Malin	Four buildings flooded. Some coastal road flooding, Clontarf, Sandymount Promenade flooding, East Link closed, All temporary flood defences put in place.
October 2011	Fluvial, Pluvial & Coastal: Extreme rainfall combined with heavy rainfall previous day, leading to soil saturation. Dublin Airport recorded 9 hour rainfall of 66.8 mm, with Casement Airport recording a daily total of 82.2 mm.	Severe flooding in many parts of Dublin city and east coast, with many homes and businesses under water. Over 1,250 reports of property flooding in Dublin City.

1 Source: Met Éireann Major Weather Events.

Date	Source of Flooding	Areas impacted
2nd July 2009 (Midnight to 9am)	Pluvial: Spells of heavy, thundery rain affected the east and northeast of the country. 38.2mm of rainfall was recorded at Dublin Airport.	Several areas within the Dublin City Council boundary were affected. One of the worst affected areas was Donnycarney in North Dublin, where the surface water collection system draining to the Wad River culvert was overwhelmed at the Malahide Road, resulting in flooding at Collins' Avenue and Clanmoyle Road. Reports also of spot flooding at Raheny, Clontarf, Drumcondra, Finglas Sandymount, Cabra, and Glendhu Park in Ashtown.
9 August 2008	Pluvial: Dublin Airport recorded 36 mm of rainfall in the worst hour, 43 mm in two hours and over 76 mm in five hours. Records from the south city only indicate 40% of this precipitation.	Within two hours of commencement of precipitation numerous calls were placed with Dublin Fire Brigade, the Dublin Traffic Control Centre and the City Council's Drainage Division. 19 areas of North Dublin had severe flooding, many of these areas had no previous known history of such flooding. Over 150 residential properties were inundated, as well as commercial premises, public buildings, major roadways etc. Areas of Cabra, Finglas and Glendhu Park in Ashtown were badly flooded.
1 February 2002	Coastal: Rain led to high groundwater levels which was coupled with the highest tide ever recorded. This caused sea defences to be overtopped.	Over 1,100 buildings recorded as flooded. Cost estimate of reported flood insurance damages - €60M.
13 November 2000	Fluvial: Heavy rainfall in November, preceded by a very wet October, led to the ground being well saturated and unable to absorb the rain that fell over a 30 hour period on the 12 and 13 November 2000.	Significant disruption and damage, especially in the area of the Lower Tolka catchment.
25 August 1986	Fluvial: Hurricane Charlie – The heaviest rain fell on the mountains south of Dublin. At Kippure an estimated 280 mm fell, about double the normal	Extensive storm and flood damage across the city, coupled with extreme tides giving coastal flooding.

Date	Source of Flooding	Areas impacted
	rainfall in that area for the whole month of August. Record for the greatest fall of rain in a day, measuring 200mm, established at Kilcoole, south of Greystones.	
9–11 June 1963	Pluvial: Thunderstorms were widespread. Highest hourly rainfall ever recorded in Ireland.	Considerable flooding occurred in the area between Dundrum, Blackrock and Sandymount. The high value recorded at Ballsbridge indicated this area must have had exceptional rainfall.

2.3 Dublin FloodResilienCity Pluvial Mapping

Information on pluvial flood risk comes from the EU Interreg IVB FloodResilienCity Project. For the project, a city wide model provided a high-level assessment of pluvial flood risk across Dublin and five Pilot Areas were identified for further detailed investigation of potential pluvial flood risk i.e. Type 2 modelling. Figure 2-7 below shows a map with the pluvial flood outlines. The mapping indicates accumulations of stormwater in many isolated pockets throughout the Jamestown lands. The granularity of the base topographic data is course and the detail of the stormwater network is also not explicitly modelled the SWMP will provide further insight into the management of pluvial risk and the existing stormwater system.

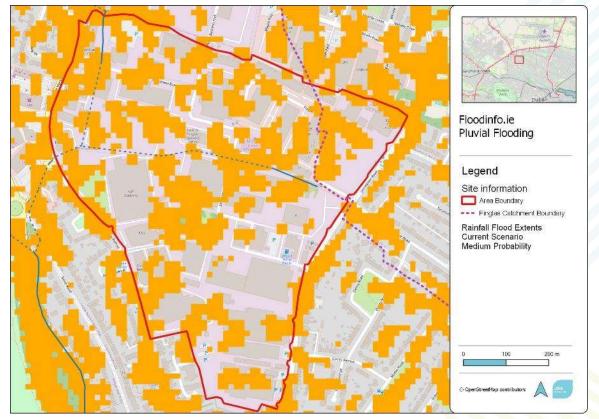


Figure 2-7 FloodResilienCity Flood Map

JBA

2.4 CFRAM

In 2011 the OPW commenced appointment of consultants to carry out a more detailed flood risk assessment on key flood risk areas. This work was undertaken under the CFRAM programme across seven river basin districts in Ireland.

Under the Eastern CFRAM Jamestown/Finglas was not identified as an AFA (Area for Further Assessment). Therefore, no CFRAM mapping exits for the Finglas Stream at this location.

2.5 PFRA & NIFM

The Preliminary Flood Risk Assessment (PFRA) is a national screening exercise that was undertaken to identify areas at potential flood risk. The PFRA is a requirement of the EU Floods Directive and the publication of this work has led to, and has informed, more detailed assessment, which is being undertaken as part of the Catchment Flood Risk Assessment and Management (CFRAM) studies. The PFRA study considered flooding from several sources, including fluvial, tidal, pluvial and groundwater, and resulted in a suite of broadscale flood maps.

The PFRA fluvial data has now been replaced by NIFM fluvial flood extents, however this is only the case where CFRAM flood outlines are not provided and where the catchment is greater than 5km². Since the catchment area of the Finglas Stream is less than 5km² though the Masterplan site there is no publicly available flood mapping.

2.6 JBA Hydraulic Modelling

To provide indicative Flood Zones for the Finglas Stream a hydraulic model of the watercourse was constructed using the culvert/network data from the GDSDS, LiDAR data and hydrological estimation of flow volumes. The model runs from upstream of the M50 culvert and has a downstream boundary to the south of the Masterplan lands where the Finglas Stream enters open channel. The modelling was undertaken using the ESTRY-TuFLOW software package and is sufficient in detail to represent the hydraulic effects of the local culverts and in particular the potential surcharging of the downstream 1200mm diameter culvert at the downstream extent of the open channel section. The hydrology has been undertaken using the IH124 urban methodology and will therefore not fully represent the attenuation impacts of the upstream drainage network within this heavily urbanised area. There is scope for future updates to the hydrology and modelling with the construction of a more detailed integrated drainage/catchment model. This could be undertaken at a stage when more detailed design is being undertaken.

2.6.1 Current Scenario Flood Zones

The results of the hydraulic modelling are displayed below in Figure 2-8. The Finglas Stream enters the Masterplan lands through the culvert outlet pictured in Figure 2-5. The flow then enters the riparian zone which is poorly represented by the OPW LiDAR data, nevertheless it is clear that the downstream culvert is only able to convey 66% of the total flow with the remaining surcharging overland (in the 1% AEP event). This overland flow route bypasses the culvert and follows the above ground topographic surface in a south to south-westerly direction back towards the open channel adjacent to the Finglas bypass. It represents a potential flood risk to property within and beyond the boundary of the Masterplan area.

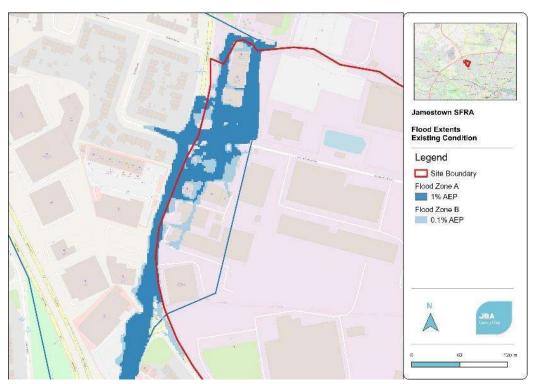


Figure 2-8 Finglas Stream Indicative Flood Zone Mapping

2.6.2 Climate Change Flood Mapping

Climate change has also been considered during the hydraulic analysis and Figure 2-9 below includes a representation of the MRFS and HEFS climate change, see Section 1.5.2 for further details on climate change allowances. The 1% AEP climate change outlines are generally still less than the extent of Flood Zone B and are indicative of increased surcharging at the 1200mm diameter culvert inlet at the downstream of the existing open channel section.

Figure 2-9 Finglas Stream Climate Change Flood Mapping 1% AEP

2.7 Finglas Stream Topography

An alternative representation of the potential on-site depressions can be presented using LiDAR data. Figure 2-10 presents the current LiDAR data for the study area, along with associated overland flowpaths.

There is a general south-westerly gradient present on the site, with some distinct low points. These are presented as blue polygons on the figure below. Two of the polygons correspond to existing fire retention ponds.

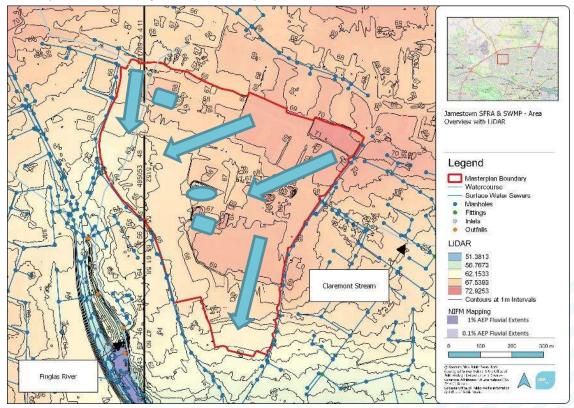


Figure 2-10 Area Overview with LiDAR and Indicative Flow Paths and Depressions

3 Proposed Green Infrastructure

3.1 Rainwater Management/GI philosophy

As aforementioned, the RMS isn't limited to providing hydraulic solutions to a proposed development. The focus is to provide a viable strategy that manages surface water in a sustainable way, providing water quality and environmental benefits as well as ensuring there is no unacceptable residual risk of flooding to each site.

Each design submission proposed within the study area will be required to adhere to the following requirements:

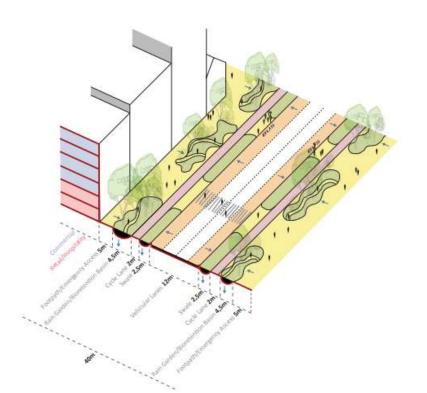
Table 3-1 GI Requirements

RMS Objective	Category	Ref	Standard	Note
	Interception/ Treatment	R1	Provide 5mm interception of rainfall using nature- based solutions at source within private development	Interception to be in compliance with Table 24.6 of CIRIA C753
		R2	Stormwater run-off on all public thoroughfares to pass through one interception measure prior to entering network.	Interception to be in compliance with Table 24.6 of CIRIA C753
Water Quality		R3	Public throughfares to incorporate open swales as stormwater carrying elements where possible to promote greater GI connectivity	
	Attenuation	R4	Provide attenuation using green/blue roofs, detention and/or retention ponds. Sub-surface attenuation may only be permitted when clear reasoning for alternatives has been provided to DCC.	
Climate Change		R5	Allow for 20% climate change on rainfall intensity and 10% for urban creep.	
Flood Risk	Flood protection	R6	Discharge rates to be restricted to the greater of QBAR or 2 I/s/ha.	

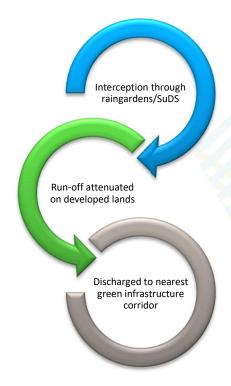
This approach is to be taken as complementary to and not a replacement for either GDSDS or DCC's own SuDS guidance documents.

3.2 Green Infrastructure Design

3.2.1 Public Realm


The public realm thoroughfares when integrated into the green infrastructure network provide increased connectivity for habitats across the study area. This directly aligns with the DP Objective GI2: *To develop an interconnected green infrastructure network of strategic natural and semi-natural areas with other environmental features including green spaces, rivers, canals, the coastal and marine area, and other physical features including streets and civic spaces that supports ecological, wildlife, and social connectivity.*

The public realm thoroughfares will have a requirement to provide interception of their own stormwater runoff and provide corridors for stormwater linkage between each subcatchment. Open swales are very effective in creating an integrated biodiversity network. An example of this is shown in Figure 3-1.



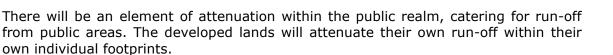

This can be scaled up as required, with both swales and rain gardens serving as GI measures within the corridors.

Figure 3-2 Typical Green Infrastructure Corridor (Source: City Edge Project, DCC)

It is acknowledged that the scale of swale that can be accommodated into a public thoroughfare may not be able to cater for all upstream flows received, and that some subsurface drainage is required. The hierarchy for developing stormwater proposals on the public thoroughfares should thus follow the following hierarchy:

3.2.2 Private Development

As shown in Table 3-1, there are a number of both water quality and hydraulic requirements that are to be adhered to.

Each development must present proposals that provide 5mm interception as per CIRIA C753. These interception measures should be provided at source unless impossible to do so.

Examples of interception measures are:

- Green/Blue Roofs
- Rain gardens
- Permeable Paving
- Bioretention tree pits

A secondary means of interception is to be provided by retention or detention basins within each developed site. This is detailed further in 3.2.3. Initial capacities for the volume to be retained are also provided.

3.2.3 Hydraulic Design

The following design calculations present an indicative stormwater design approach that could be applied to the lands. Within it, it gives an indication of the extent of attenuation volumes within the defined catchment for both public and private lands. This indicative design works on the premise that the public realm storage will only be catering for its own run-off outside the perimeters of the private boundaries. This estimation of the attenuation requirements was carried out using Causeway Flow software. The site was broken down into 8no. drainage areas based on the site topography and available space for attenuation. These areas are shown in Figure 3-3 below.

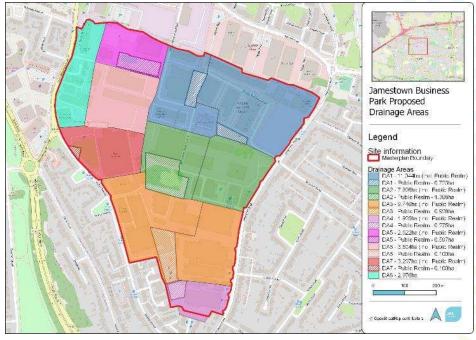


Figure 3-3 Proposed Drainage Areas

JBA

Six separate models were completed for the different drainage areas (DA), comprising: (1) DA1, (2) 3no. linked attenuation storages for DA2-4, (3) DA5, (4) DA6, (5) DA7, and (6) DA8. DA's 1, 5, 6, 7 and 8 will drain into the open channels as part of the Masterplan and therefore are not hydraulically linked to the other catchments.

Attenuation storage locations were linked in series by conduits and outflows restricted in the form of a cascading network, taking into account the increasing contributing areas. Flows were restricted by modelling a Hydro-Brake flow control device at the storage nodes. Note, this is not imposing the need for hydro-brake flow controls at this stage but merely identifies the need for some form of flow restriction. Several assumptions had to be taken to make the hydraulic model viable, namely:

- All modelled storage nodes were taken as 1m deep and the plan areas were adjusted accordingly to meet to storage requirements.
- To ensure that downstream storage water levels did not hinder the required pass forward rates of the preceding flow controls, which would skew the attenuation results, the preceding flow control invert levels were placed at a higher level than the downstream water levels (i.e. 1m above the downstream storage invert levels). This indicative only and isn't to impose a means of attenuation depths on the proposed developments.

The models included the following parameters:

- M5-60: 16.400mm
- Ratio-R: 0.274
- Cv: 1.000
- Time of Entry (te): 10mins (to account for time taken to flow through the site stormwater networks)
- Additional Storage: 0 m3/ha
- Storm Durations: 15-10,080mins
- Simulation Return Periods: 1, 2, 5, 10, 30 and 100-year
- Climate Change: 20%
- Additional Area (Urban Creep factor): 10%

The models were set up so that, for a 100-year event, outflows were restricted to QBAR. QBAR was calculated using the IH124 method using a SAAR = 791mm and Soil Type SOIL = 4 (SPR = 0.47), which gave the local QBAR as 5.571/s/ha, and this calculation is included in Appendix B. The "central" storage nodes (public realm / "PR") for each drainage area had flows restricted to QBAR. The "dummy" nodes were designed to mimic individual plots attenuation requirements. The discharge values for each individual drainage area are summarised in Table 3-2, and are also included in the appended calculations in Appendix B:

Drainage Area	Gross Area (ha)	Open Space Allowance (ha)	Positively Drained Area (Gross - Open Space) (ha)	Positively Drained Area Percentage Impermeability (%)	Net Impermeable Area (ha)	QBAR (Positively Drained Area) (I/s)
1A	3.671	0.734 (20%)	2.937	80	2.350	16.3
1 (PR 1)	0.425	0	0.425	47 (Soil Type 4)	0.2	2.3
1B	6.650	1.330 (20%)	5.320	80	4.256	29.6
1 (PR 2)	0.298	0	0.298	47 (Soil Type 4)	0.14	1.6
2A	2.505	0.501 (20%)	2.004	80	1.603	11.1
2B	4.023	0.804 (20%)	3.219	80	2.575	17.9
2 (PR)	1.398	0	1.398	47 (Soil Type 4)	0.657	7.7
3A	4.789	0.957 (20%)	3.832	80	3.066	21.3
3B	4.029	0.805 (20%)	3.224	80	2.579	17.9
3 (PR)	0.928	0	0.928	47 (Soil Type 4)	0.436	5.1
4A	1.650	0.330 (20%)	1.320	80	1.056	7.3
4 (PR)	0.275	0	0.275	47 (Soil Type 4)	0.129	1.5
5A	2.025	0.405 (20%)	1.620	80	1.296	9.0
5 (PR)	0.597	0	0.597	47 (Soil Type 4)	0.281	3.3
6A	3.724	0.745 (20%)	2.979	80	2.383	16.5
6 (PR)	0.100 (rounded up from 0.099)	0	0.100	47 (Soil Type 4)	0.047	0.5
7A	3.197	0.639 (20%)	2.558	80	2.046	14.2
7 (PR)	0.100 (rounded up from 0.094)	0	0.100	47 (Soil Type 4)	0.047	0.5
8A	2.976	0.595 (20%)	2.381	80	1.905	13.2
Total	43.36	7.85	35.52		27.05	

Table 3-2 Calculation of QBAR for each drainage area

JBA consulting As DAs 2-4 are linked in series, the pass-forward rate increases as the system increases its upstream catchment. The pass-forward rates at DAs 3 and 4 will therefore be QBAR for the entire contributing areas at the respective locations. The linked network for DAs 2-4 will discharge at QBAR to the public network at Jamestown Road. This cumulative effect on flow rates is presented in Table 3-3.

Drainage Area	Combined Gross Area (ha)	Combined Open Space Allowance (ha)	Cumulative Positively Drained Area (ha)	Cumulative Net Impermeable Area (ha)	Cumulative QBAR (Positively Drained Area) (I/s)
3 (2+3 Cumulative)	17.672	3.067	14.605	10.916	81.3
4 (2+3+4 Cumulative)	19.597	3.397	16.200	12.101	90.2

Table 3-3 Calculation of cumulative QBAR for drainage areas linked in series

QBAR rates for each sub-catchment were also calculated and are presented in Table 3-4.

Drainage Area	Positively Drained Area (ha)	QBAR (Positively Drained Area) (l/s)
1	8.98	50.0
2	6.621	36.8
3	7.984	44.4
4	1.595	8.8
5	2.217	12.3
6	3.079	17.1
7	2.658	14.8

Table 3-4 Calculation of QBAR for each drainage area as a whole

The "dummy" storage nodes (representing the developed land attenuation) were placed at a higher level in the model than the downstream "central" nodes (representing the public realm attenuation) to achieve the required QBAR pass-forward rates. The catchment areas assigned to the "dummy" nodes represent the individual developments, while the catchment areas assigned to the "central" nodes represent public realm areas.

Note, the model presents these attenuation areas as sub-surface structures in the calculation outputs appended to this document. This was necessary to manage the hydraulic head requirements of the flow control units initially used in order to develop a magnitude of attenuation, as previously outlined.

The simulations produced a volume of water at each node, "dummy" and "central", which would need to be stored. The storage was sized by manipulating the plan area while keeping the depth constant. The simulation results are shown in Table 3-5 and Table 3-6 for the 100-year (1% AEP event) critical storm and include for climate change and urban creep allowances. The storage structures have been designed to fill to capacity and discharge at the required flow rates using a 1m head level on the flow controls during the 100-year event. The "dummy" node volumes represent an

indicative volume only which would need to be stored in each plot by the stormwater networks and attenuation systems.

It is important to recognise that the generated volumes and flow rates are specific to this high-level model only, taking into consideration all the assumptions made. The actual attenuation volumes and flow rates of the storage structures would need to be verified during the design of same.

Drainage Area	"Dummy" No	de	"Central" Node)	All Nodes
	Storage (m3)	Outflow (I/s)	Storage (m3)	Outflow (I/s)	Critical Storm Duration (minutes)
1A	1766	16.3	-	-	1440
1 (PR 1)	-	-	110	18.7	960
1B	3309	29.6	-	-	2160
1 (PR 2)	-	-	50	50.0	720
2A	1175	11.6	-	-	1440
2B	1961	17.9	-	-	1440
2 (PR)	-	-	382	36.8	960
3A	2345	21.3	-	-	1440
3B	1961	17.9	-	-	1440
3 (PR)	-	-	151	81.3	960
4A	720	8.8	-		960
4 (PR)	-	-	152	90.2	4320

 Table 3-5 Attenuation Simulation Requirements - 100-year event (1% AEP)

Drainage Area	"Dummy" No	de	"Central" Node)	All Nodes
	Storage (m3)	Outflow (I/s)	Storage (m3)	Outflow (I/s)	Critical Storm Duration (minutes)
5A	959	9.0	-	-	1440
5 (PR)	-	-	150	12.3	960
6A	1796	16.5	-	-	1440
6 (PR)	-	-	20	17.1	1440
7 A	1533	14.2	-	-	1440
7 (PR)	-	-	14	14.8	1440
8A	1451	13.2	-	-	1440

Table 3-6 Attenuation Simulation Requirements - 100-year event (1% AEP)

As is expected, increasing volumes of runoff need to be attenuated in line with longer return periods (1, 2, 5, 10, 30 and 100-year calculations included in Appendix B). Table 3-6 provides indicative volumes required only. Both the final volumes and locations will be defined by the individual development designs.

In the public space, the model indicates a requirement for a small volume of attenuation. The means by which this is incorporated into the green space is at the discretion of the local authority, working with relevant statutory bodies and prospective

the developers. There is no final design currently in place for the shape of the public green areas.

Figure 3-4 indicates the indicative volumes for each catchment, represented as 1m deep attenuation structures in plan.

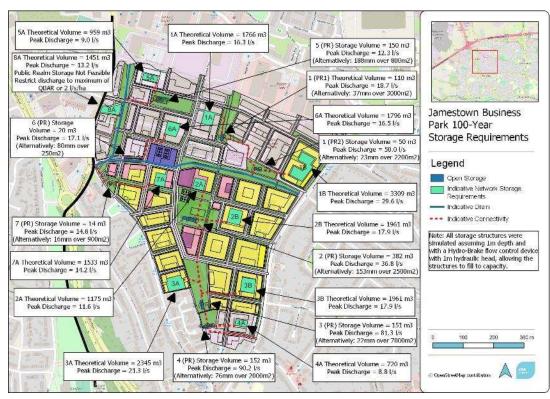


Figure 3-4 1% AEP event attenuation requirements

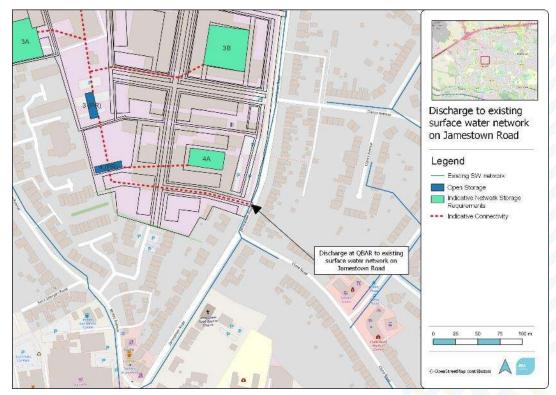
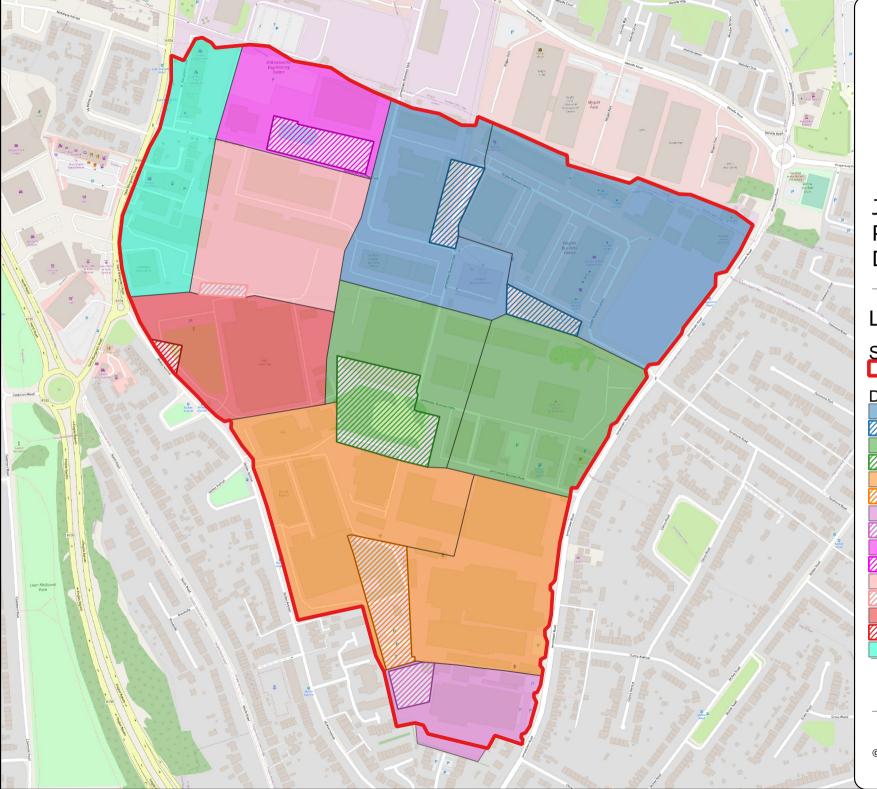


Figure 3-5 Indicative drainage connection from Jamestown Lands to existing network on Jamestown Road

4 Conclusion

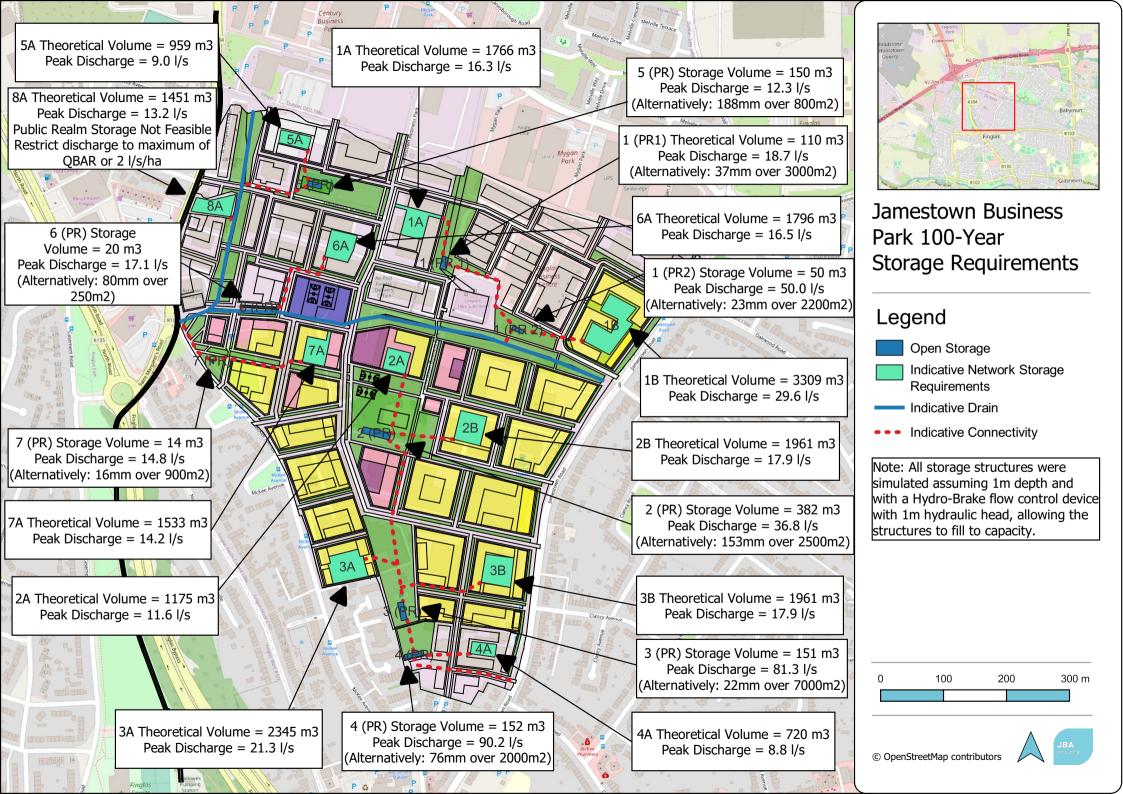

The aim of this Rainwater Management Strategy (RMS) is to develop a strategy for incorporating nature-based solutions into the control of surface water run-off.

The following surmises how the RMS will implement this:

- This RMS ensures that any development in the Study Area will require SuDS to be incorporated into their design. The RMS goes one step further in that it ensures that interconnectivity of the green infrastructure network is integrated into the design philosophy.
- The public thoroughfares will provide habitat linkages between each development, bringing the development in line with DCC's green infrastructure policies.
- Site controls will ensure both water quality will be improved both at development level and further improved through the GI network.
- The attenuation network provides clear prescriptive parameters on the requirements of each prospective development in respect to their attenuation responsibilities. This aids the decision-making process at both detailed design and planning level. An indicative attenuation quantum has been provided at a catchment level. This is to give an initial overview of the extent of attenuation that may be required but is not a final design. This will be dependent on the detailed design of each development. A detailed stormwater management plan will be required to be developed as per SI25 of the DCC Development Plan.

JBA consulting

Appendix A - Drawings



Jamestown Business Park Proposed Drainage Areas

Legend

	Site information							
	Masterplan Boundary							
<u>Dra</u> inage Areas								
	DA1 - 11.044ha (incl. Public Realm)							
	DA1 - Public Realm - 0.723ha							
	DA2 - 7.926ha (incl. Public Realm)							
	DA2 - Public Realm - 1.398ha							
	DA3 - 9.746ha (incl. Public Realm)							
	DA3 - Public Realm - 0.928ha							
	DA4 - 1.925ha (incl. Public Realm)							
[[]]]	DA4 - Public Realm - 0.275ha							
	DA5 - 2.622ha (incl. Public Realm)							
	DA5 - Public Realm - 0.597ha							
	DA6 - 3.824ha (incl. Public Realm)							
/////	DA6 - Public Realm - 0.100ha							
	DA7 - 3.297ha (incl. Public Realm)							
////	DA7 - Public Realm - 0.100ha							
	DA8 - 2.976ha							
0	100 200 m							

© OpenStreetMap contributors

JBA consulting

Appendix B – Calculations

Print

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by: Paul Browne			Site Details				
Site name:	name: Jamestown			Latitude:	53.39722° N		
Site location:	Finglas				Longitude:	6.298° W	
management for dev	velopmen ry standa	ts", SC03 ards for S	0219 (2013) , DDS (Defra, 2	the SuDS Manual C 2015). This informat	753 (Ciria, 2015) ion on greenfield Date:	1968914031 Feb 09 2023 10:15	
Runoff estimati	ion app	roach	IH124				
Site characteri	stics				Notes		
Total site area (h	a) : 1						
Methodology					(1) Is Q _{BAR} < 2.0 I/s/ha?		
Q _{BAR} estimation n	nethod:	Calc	alculate from SPR and SAAR		When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.		
SPR estimation m	ethod:	Calc	culate from SOIL type				
Soil characteris	stics	Defau	ult E	dited			
SOIL type:		4	4		(2) Are flow rates < 5.0 l/s?		
HOST class:		N/A	N/A		Where flow rates are less than 5.0 l/s consent for		
SPR/SPRHOST:		0.47	0.4	.7	discharge is usually set at 5.0 l/s if blockage from		
Hydrological characteristics			Default	Edited	vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage		
SAAR (mm):			961	791	elements.		
Hydrological regi	on:		12	12	(3) Is SPR/SPRHOST ≤ 0.3?		
Growth curve fac	tor 1 yea	ar.	0.85	0.85			
Growth curve factor 30 years:		ears:	2.13	2.13		are low enough the use of	
Growth curve factor 100 years:			2.61	2.61	soakaways to avoid discharge offsite would norma be preferred for disposal of surface water runoff.		
Growth curve factor 200 years:			2.86	2.86			

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	6.99	5.57
1 in 1 year (l/s):	5.95	4.73
1 in 30 years (l/s):	14.9	11.86
1 in 100 year (l/s):	18.26	14.54
1 in 200 years (l/s):	20.01	15.93

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-X Network: Drainage PB 10/05/2023		4-SO-PO1. Page 1	
	Simulation Set	<u>ings</u>		
Rainfall Methodology FSR Region M5-60 (mm) Ratio-R Summer CV Analysis Speed	FSR Scotland and Ireland 16.400 0.274 1.000 Detailed	Drain E Additiona Check	Skip Steady State x Down Time (mins) 240 al Storage (m³/ha) 0.0 Discharge Rate(s) x Discharge Volume x	
	Storm Duration	ons		
	3606009604807201440	2160 2880	4320 7200 10 5760 8640	0080
Return Period (years)	Climate Change Addi (CC %)	tional Area (A %)	Additional Flow (Q %)	
1	20	10	0	
2	20	10	0	
5	20	10	0	
10	20	10 10	0	
30	20 20	10 10	0 0	
	Node 1A Online Hydro-E			
Flap Valve x	Sum	Objective	(HE) Minimise upstrea ✓	am storage
Replaces Downstream Link x Invert Level (m) 68		p Available ct Number	✓ CTL-SHE-0182-1630-1	000-1630
	000 Min Outlet Di		0.225	.000 1050
Design Flow (I/s) 16		• •	1500	
<u>N</u>	ode 1 (PR1) Online Hydro	-Brake® Cor	itrol	
Flap Valve x		Objective	(HE) Minimise upstrea	am storage
Replaces Downstream Link x	Sum	p Available	√	in storage
		' ict Number	CTL-SHE-0193-1870-1	.000-1870
- · · · · · · · · · · · · · · · · · · ·	000 Min Outlet Di		0.225	
Design Flow (I/s) 18	.7 Min Node Diar	neter (mm)	1500	
	Node 1B Online Hydro-E	rake [®] Contro	<u>ol</u>	
Flap Valve x		Objective	(HE) Minimise upstrea	am storage
Replaces Downstream Link x		p Available	\checkmark	-
		ict Number	CTL-SHE-0235-2960-1	.000-2960
- · · · · · · · · · · · · · · · · · · ·	000 Min Outlet Di		0.300	
Design Flow (I/s) 29	.6 Min Node Diar	ieter (mm)	1500	
<u>N</u>	ode 1 (PR2) Online Hydro	-Brake® Cor	<u>itrol</u>	
Flap Valve x		Objective	(HE) Minimise upstrea	am storage
Replaces Downstream Link x		p Available	\checkmark	
		ct Number	CTL-SHE-0294-5000-1	.000-5000
Design Depth (m) 1. Design Flow (l/s) 50	000 Min Outlet Di 0.0 Min Node Diar		0.375 1800	
	Node 1B Depth/Area Sto			
,	0000 Safety Factor	2.0	Invert Level (m	
Side Inf Coefficient (m/hr) 0.0	0000 Porosity	1.00 T	ime to half empty (mins	5) 720

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Page 2
JBA	Unit 24, Grove Island	Network: Drainage Area 1
consulting	Corbally	PB
	Limerick	10/05/2023
	Depth Area	Inf Area Depth Area Inf Area
	(m) (m ²)	
	0.000 3309.	0 0.0 1.000 3309.0 0.0
	Node	1A Depth/Area Storage Structure
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	
	Depth Area	Inf Area Depth Area Inf Area
	(m) (m ²)	
	0.000 1766.	0 0.0 1.000 1766.0 0.0
	Node 1	(PR1) Depth/Area Storage Structure
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	, , , , , , , , , , , , , , , , , , , ,
	Depth Area (m) (m² 0.000 110.) (m ²) (m) (m ²) (m ²)
	Node 1	(PR2) Depth/Area Storage Structure
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	, , , , , , , , , , , , , , , , , , , ,
	Depth Are (m) (m ²	²) (m ²) (m) (m ²) (m ²)
	0.000 50.	0 0.0 1.000 50.0 0.0

		JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 3
JB	Δ	Unit 24, Grove Island	Network: Drainage Area 1	
JB/ consu	Iting	Corbally	PB	
		Limerick	10/05/2023	

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (min	'		Node Vol (m³)
1440 minute summer	1B	. 93	0.37		1225.9810
1440 minute summer	1A	93	0.35	54 50.4	625.5377
960 minute summer	1(PR1)	58	0.33	30 21.2	36.3372
1440 minute summer	1 (PR2)	87	0 0.40	05 49.4	20.2455
1440 minute summer	OUTFALI	_ 87	0.08	35 48.9	0.0000
Link Event	US	Link	DS	Outflow	/ Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	1B	1.000	1 (PR2)	29.2	<u>)</u>
1440 minute summer	1A	2.000	1 (PR1)	16.3	3
960 minute summer	1(PR1)	2.001	1 (PR2)	18.6	5
1440 minute summer	1 (PR2)	1.001	OUTFA	LL 48.9	2567.8

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 4
ЈВА	Unit 24, Grove Island	Network: Drainage Area 1	
consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (min	'.	Inflow (I/s)	Node Vol (m³)
1440 minute summer	1B	. 93	0.437	105.8	1445.4810
1440 minute summer	1A	93	0.424	58.4	748.1594
960 minute summer	1(PR1)	60	0 0.396	22.6	43.5195
1440 minute summer	1 (PR2)	90	0 0.463	50.6	23.1739
1440 minute summer	OUTFALI	_ 90	0.085	49.7	0.0000
Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	1B	1.000	1 (PR2)	29.6	
1440 minute summer	1A	2.000	1(PR1)	16.3	
960 minute summer	1(PR1)	2.001	1 (PR2)	18.7	
1440 minute summer	1 (PR2)	1.001	OUTFALL	49.7	2926.2

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 5
JBA	Unit 24, Grove Island	Network: Drainage Area 1	
JBA consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (min	'		Node Vol (m³)
1440 minute summer	1B	96	, 0 0.5	, , ,	1738.8860
1440 minute summer	1A	96	0.5	16 68.5	911.8396
960 minute summer	1(PR1)	61	.5 0.4	89 23.9	53.8265
960 minute summer	1 (PR2)	60	0 0.5	33 53.0	26.6465
960 minute summer	OUTFALI	L 60	0.0	86 50.0	0.0000
Link Event	US	Link	DS	Outflov	v Discharge
(Upstream Depth)	Node		Node	e (l/s)	Vol (m³)
1440 minute summer	1B	1.000	1 (PR2) 29.6	5
1440 minute summer	1A	2.000	1(PR1) 16.3	3
960 minute summer	1(PR1)	2.001	1 (PR2) 18.7	7
960 minute summer	1 (PR2)	1.001	OUTFA	LL 50.0	2358.0

ſ		JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 6
	JBA	Unit 24, Grove Island	Network: Drainage Area 1	
	JBA consulting	Corbally	PB	
		Limerick	10/05/2023	

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Peal (min		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	1B	. 99	0	0.608	139.9	2010.3460
1440 minute summer	1A	99	0	0.601	77.3	1062.0650
720 minute summer	1(PR1)	49	95	0.586	26.8	64.4955
960 minute summer	1 (PR2)	60	0	0.604	54.3	30.1779
2880 minute summer	OUTFALI	_ 168	80	0.086	50.0	0.0000
Link Event	US	Link	I	DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	ode	(l/s)	Vol (m³)
1440 minute summer	1B	1.000	1(F	PR2)	29.6	
1440 minute summer	1A	2.000	1(F	PR1)	16.3	
720 minute summer	1(PR1)	2.001	1(F	PR2)	18.7	
960 minute summer	1(PR2)	1.001	OU	TFALL	50.0	2416.9

JBA consulting Unit 24, Grove Island Network: Drainage Area 1 Corbally PB Limetrick 10/05/2022		JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 7
	JBA	Unit 24, Grove Island	Network: Drainage Area 1	
Limorick 10/05/2022	consulting	Corbally	PB	
Linierick 10/03/2023		Limerick	10/05/2023	

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (min	'		Node Vol (m³)
2160 minute summer	1B	150	0 0.7	72 124.3	2554.4280
1440 minute summer	1A	108	0.7	76 93.6	1371.2850
480 minute summer	1(PR1)	46	64 0.8	33.5	89.3070
960 minute summer	1 (PR2)	60	0 0.7	73 55.7	38.6523
120 minute summer	OUTFALI	_ 14	6 0.0	86 50.0	0.0000
Link Event	US	Link	DS	Outflov	w Discharge
(Upstream Depth)	Node		Node	e (I/s)	Vol (m³)
2160 minute summer	1B	1.000	1 (PR2) 29.	6
1440 minute summer	1A	2.000	1 (PR1) 16.	3
480 minute summer	1(PR1)	2.001	1 (PR2) 18.	7
960 minute summer	1 (PR2)	1.001	OUTFA	LL 50.	0 2435.2

JBA consulting Unit 24, Grove Island Network: Drainage Area 1 Corbally PB Limerick 10/05/2023		JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 8
	JBA	Unit 24, Grove Island	Network: Drainage Area 1	
Limerick 10/05/2023	consulting	Corbally	PB	
		Limerick	10/05/2023	

Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Peal (min:		Depth (m)	Inflow (I/s)	Node Vol (m³)
2160 minute summer	1B	156	0	1.000	152.3	3308.2700
1440 minute summer	1A	111	.0	0.999	115.6	1765.0420
960 minute summer	1(PR1)	66	0	0.998	29.3	109.7840
720 minute summer	1 (PR2)	45	0	0.995	59.2	49.7629
120 minute summer	OUTFALL	_ 21	0	0.086	50.0	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	ode	(l/s)	Vol (m³)
2160 minute summer	1B	1.000	1(F	PR2)	29.6	
1440 minute summer	1A	2.000	1(F	PR1)	16.3	
960 minute summer	1(PR1)	2.001	1(F	PR2)	18.7	
720 minute summer	1 (PR2)	1.001	OU	TFALL	50.0	2040.8

JBA Consulting Unit 24, Grove Island Corbally Limerick		File: JQZ-JBAI-XX-X Network: Drainage PB 10/05/2023		-	
		Simulation Sett	<u>ngs</u>		
Rainfall Methodol FSR Reg M5-60 (n Rati Summer Analysis Sp	ion Scot nm) 16.4 o-R 0.27 CV 1.00	tland and Ireland 400 74	Drain [Addition Check	(/	40 0.0
15 60 180 30 120 240	360 480	Storm Duratio 600 960 720 1440	ns 2160 2880	4320 7200 5760 8640	10080
Return Per		-	ional Area	Additional Flow	
(years)		(CC %) 20	(A %) 10	(Q %) 0	
	1 2	20	10 10	0	
	5	20	10	0	
	10	20	10	0	
	30	20	10	0	
]	.00	20	10	0	
	<u>Node</u>	2A Online Hydro-B	ake® Contr	ol	
Flap Valve	x		Objective	(HE) Minimise upstr	ream storage
Replaces Downstream Link	Х		o Available	\checkmark	
Invert Level (m)	66.000		t Number	CTL-SHE-0156-1160)-1000-1160
Design Depth (m) Design Flow (l/s)	1.000 11.6	Min Outlet Dia Min Node Diam	. ,	0.225 1200	
	Node	2B Online Hydro-B		ol	
	Nouc				
Flap Valve	х		Objective	(HE) Minimise upstr	ream storage
Replaces Downstream Link	X		o Available		1000 1700
Invert Level (m) Design Depth (m)	66.000 1.000	Min Outlet Dia	t Number	CTL-SHE-0189-1790 0.225	-1000-1790
Design Flow (I/s)	17.9	Min Node Diam	• •	1500	
	Node 2	(PR) Online Hydro-	Brake® Con	trol_	
Flap Valve			Objective	(HE) Minimise upstr	and storage
Replaces Downstream Link	x x	Sum	Available	(HE) Minimise upsu	Callistolage
Invert Level (m)	65.000		t Number	CTL-SHE-0258-3680)-1000-3680
Design Depth (m)	1.000	Min Outlet Dia	. ,	0.300	
Design Flow (I/s)	36.8	Min Node Diam	eter (mm)	1800	
	<u>Node</u>	3A Online Hydro-B	ake® Contr	<u>ol</u>	
Flap Valve	х		Objective	(HE) Minimise upstr	eam storage
Replaces Downstream Link	х		o Available	\checkmark	-
Invert Level (m)	65.000		t Number	CTL-SHE-0204-2130)-1000-2130
Design Depth (m)	1.000 21.3	Min Outlet Dia Min Node Diam		0.225 1500	
Design Flow (I/s)					

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.Page 2Network: Drainage Areas 2, 3, 4PB10/05/202310/05/2023
	Nod	e 3B Online Hydro-Brake [®] Control
	Flap Valve x Replaces Downstream Link x Invert Level (m) 65.000 Design Depth (m) 1.000 Design Flow (I/s) 17.9	Objective(HE) Minimise upstream storageSump Available✓Product NumberCTL-SHE-0189-1790-1000-1790Min Outlet Diameter (m)0.225Min Node Diameter (mm)1500
	Node	<u>3 (PR) Online Hydro-Brake® Control</u>
	Flap Valve x Replaces Downstream Link x Invert Level (m) 64.000 Design Depth (m) 1.000 Design Flow (l/s) 81.3	Objective (HE) Minimise upstream storage Sump Available ✓ Product Number CTL-SHE-0361-8130-1000-8130 Min Outlet Diameter (m) 0.375 Min Node Diameter (mm) 2100 e 4A Online Hydro-Brake [®] Control
	Flap Valve x Replaces Downstream Link x Invert Level (m) 64.000 Design Depth (m) 1.000 Design Flow (l/s) 8.8	Objective (HE) Minimise upstream storage Sump Available ✓ Product Number CTL-SHE-0137-8800-1000-8800 Min Outlet Diameter (m) 0.150 Min Node Diameter (mm) 1200
	Node	4 (PR) Online Hydro-Brake [®] Control
	Flap Valve x Replaces Downstream Link x Invert Level (m) 63.000 Design Depth (m) 1.000 Design Flow (l/s) 90.2	Objective(HE) Minimise upstream storageSump Available✓Product NumberCTL-SHE-0378-9020-1000-9020Min Outlet Diameter (m)0.450Min Node Diameter (mm)2100
	Node	e 2A Depth/Area Storage Structure
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	
	Depth Area (m) (m² 0.000 1175) (m²) (m) (m²) (m²)
	Node	e 2B Depth/Area Storage Structure
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	
	Depth Area (m) (m² 0.000 1961) (m²) (m) (m²) (m²)
	Node	2 (PR) Depth/Area Storage Structure
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	
	Depth Are (m) (m ² 0.000 382	²) (m ²) (m) (m ²) (m ²)

Flow+ v10.6.232 Copyright © 1988-2023 Causeway Technologies Ltd

JBA Consulting Unit 24, Grove Island Corbally Limerick JBA Consulting JBA Consulting JBA Consulting Unit 24, Grove Island Corbally Limerick JBA Consulting File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Page 3 Network: Drainage Areas 2, 3, 4 PB 10/05/2023	
Node 3A Depth/Area Storage Structure	
Node Sr. Deptin/Field Storage StructureBase Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)	65.000 570
DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m)(m²)0.0002345.00.01.0002345.00.0	
Node 3B Depth/Area Storage Structure	
Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)	65.000 570
DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m)(m²)(m²)0.0001961.00.01.0001961.00.0	
Node 3 (PR) Depth/Area Storage Structure	
Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)	64.000 375
DepthAreaInf AreaDepthAreaInf Area (m) (m^2) (m^2) (m) (m^2) (m^2) 0.000 151.0 0.0 1.000151.0 0.0	
Node 4A Depth/Area Storage Structure	
Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)	64.000 390
DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m)(m²)0.000720.00.01.000720.00.0	
Node 4 (PR) Depth/Area Storage Structure	
Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)	63.000 300
DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m)(m²)0.000152.00.01.000152.00.0	

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 4
JBA	Unit 24, Grove Island	Network: Drainage Areas 2, 3, 4	
consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Pe	ak	Depth	Inflow	Node
	Node	e (mi	ns)	(m)	(l/s)	Vol (m³)
1440 minute summer	2A	9	900	0.347	34.4	408.0469
1440 minute summer	2B	ç	930	0.361	55.2	707.9335
1440 minute summer	2 (PR)	8	370	0.397	42.5	151.5551
1440 minute summer	3A	ç	930	0.363	65.7	851.7892
1440 minute summer	3B	ç	930	0.360	55.3	706.2474
1440 minute summer	3 (PR)	8	370	0.473	81.5	71.4847
960 minute summer	4A	e	515	0.338	29.8	243.0104
1440 minute summer	4 (PR)	ç	930	0.495	89.1	75.2452
1440 minute summer	OUTFA	LL S	930	0.099	88.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		N	lode	(l/s)	Vol (m ³)
1440 minute summer	2A	2.000	2 (1	PR)	11.6	
1440 minute summer	2B	1.000	2 (1	PR)	17.8	
1440 minute summer	2 (PR)	1.001	3 (I		35.9	
1440 minute summer	3Å	3.000	3 (I	,	21.2	
1440 minute summer	3B	4.000	3 (1	PR)	17.8	
1440 minute summer	3 (PR)	1.002	4 (1	,	78.8	
960 minute summer	4A ,	5.000	4 (1	,	8.8	
1440 minute summer	4 (PR)	1.003	•	TFALL	88.3	4625.1
	. /					

ſ		JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 5
		Unit 24, Grove Island	Network: Drainage Areas 2, 3, 4	
	JBA consulting	Corbally	PB	
		Limerick	10/05/2023	

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US Node	Pea (mir		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	2A	•	30	0.417	39.9	489.9911
1440 minute summer	2B	93	30	0.429	64.0	841.6823
1440 minute summer	2 (PR)	8	70	0.449	45.3	171.5567
1440 minute summer	3A	93	30	0.432	76.2	1011.9590
1440 minute summer	3B	93	30	0.428	64.1	840.0394
1440 minute summer	3 (PR)	90	00	0.522	84.8	78.8064
960 minute summer	4A	6	30	0.406	34.6	292.3665
1440 minute summer	4 (PR)	9	60	0.544	90.6	82.7102
1440 minute summer	OUTFAL	L 9	60	0.099	89.5	0.0000
Link Event	US	Link		DS	Outflow	Discharge
Link Event (Upstream Depth)	US Node	Link	1	DS Node	Outflow (I/s)	Discharge Vol (m³)
2		Link 2.000	-	20		0
(Upstream Depth)	Node	2	2 (Node	(l/s)	0
(Upstream Depth) 1440 minute summer	Node 2A	2.000	2 (2 (Node (PR)	(l/s) 11.6	0
(Upstream Depth) 1440 minute summer 1440 minute summer	Node 2A 2B	2.000 1.000	2 (2 (3 (Node (PR) (PR)	(l/s) 11.6 17.9	0
(Upstream Depth) 1440 minute summer 1440 minute summer 1440 minute summer	Node 2A 2B 2 (PR)	2.000 1.000 1.001	2 (2 (3 (3 (Node (PR) (PR) (PR)	(l/s) 11.6 17.9 36.5	0
(Upstream Depth) 1440 minute summer 1440 minute summer 1440 minute summer 1440 minute summer	Node 2A 2B 2 (PR) 3A	2.000 1.000 1.001 3.000	2 (2 (3 (3 (3 (Node (PR) (PR) (PR) (PR)	(l/s) 11.6 17.9 36.5 21.3	0
(Upstream Depth) 1440 minute summer 1440 minute summer 1440 minute summer 1440 minute summer 1440 minute summer	Node 2A 2B 2 (PR) 3A 3B	2.000 1.000 1.001 3.000 4.000	2 (2 (3 (3 (3 (4 (Node (PR) (PR) (PR) (PR) (PR)	(I/s) 11.6 17.9 36.5 21.3 17.9	0
(Upstream Depth) 1440 minute summer 1440 minute summer 1440 minute summer 1440 minute summer 1440 minute summer	Node 2A 2B 2 (PR) 3A 3B 3 (PR)	2.000 1.000 1.001 3.000 4.000 1.002	2 (2 (3 (3 (3 (4 (4 (Node (PR) (PR) (PR) (PR) (PR)	(I/s) 11.6 17.9 36.5 21.3 17.9 80.1	0

ſ		JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 6
	JBA consulting	Unit 24, Grove Island	Network: Drainage Areas 2, 3, 4	
	consulting	Corbally	PB	
		Limerick	10/05/2023	

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Pea		Depth	Inflow	Node
	Node	(mir	,	(m)	(l/s)	Vol (m³)
1440 minute summer	2A	9	60	0.511	46.7	600.0269
1440 minute summer	2B	9	60	0.520	75.1	1020.5460
960 minute summer	2 (PR)	6	15	0.524	54.8	200.1840
1440 minute summer	ЗA	90	60	0.522	89.3	1223.6760
1440 minute summer	3B	9	60	0.520	75.2	1020.1430
1440 minute summer	3 (PR)	8	70	0.581	88.0	87.7652
960 minute summer	4A	6	60	0.501	40.9	360.9297
2160 minute summer	4 (PR)	13	80	0.601	91.5	91.3620
2160 minute summer	OUTFAL	L 13	80	0.099	90.2	0.0000
Link Event	US	Link	[DS	Outflow	Discharge
(Upstream Depth)	Node		No	ode	(l/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (P	R)	11.6	
1440 minute summer	2B	1.000	2 (P	R)	17.9	
960 minute summer	2 (PR)	1.001	З (Р	R)	36.8	
1440 minute summer	3Å Í	3.000	З (Р	,	21.3	
1440 minute summer	3B	4.000	3 (P	,	17.9	
1440 minute summer	3 (PR)	1.002	4 (P	,	80.9	
960 minute summer	4A	5.000	4 (P	,	8.8	
2160 minute summer	., .		•	r) FALL	90.2	7650.9
2100 minute summer	4 (PR)	1.003	001	FALL	90.2	/050.9

ſ		JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 7
	JBA	Unit 24, Grove Island	Network: Drainage Areas 2, 3, 4	
	JBA consulting	Corbally	PB	
		Limerick	10/05/2023	

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US Node	Pea (mir		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	2A	•	90	0.597	52.7	701.3262
1440 minute summer	2B	9	90	0.605	84.7	1185.6750
960 minute summer	2 (PR)	6	30	0.597	58.3	227.9146
1440 minute summer	3Å	9	90	0.606	100.8	1419.9140
1440 minute summer	3B	9	90	0.604	84.8	1184.3410
960 minute summer	3 (PR)	6	00	0.635	94.8	95.9385
960 minute summer	4A	6	75	0.589	46.4	424.2137
2160 minute summer	4 (PR)	13	80	0.647	92.4	98.3378
2880 minute summer	OUTFAI	LL 18	60	0.100	90.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (PR)	11.6	
1440 minute summer	2B	1.000	2 (PR)	17.9	
960 minute summer	2 (PR)	1.001	3 (PR)	36.8	
1440 minute summer	ЗA	3.000	3 (PR)	21.3	
1440 minute summer	3B	4.000	3 (PR)	17.9	
960 minute summer	3 (PR)	1.002	4 (PR)	81.1	
960 minute summer	4A	5.000	4 (PR)	8.8	
2160 minute summer	4 (PR)	1.003	Οι	JTFALL	90.3	8084.0

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Areas 2, 3, 4 PB 10/05/2023	Page 8
-------------------	---	---	--------

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US Node	Pea (mir			Node Vol (m³)
1440 minute summer	2A	10	50 0.7	75 63.9	910.6796
1440 minute summer	2B	10	80 0.7	75 102.6	1520.0240
960 minute summer	2 (PR)	6	30 0.74	48 64.6	285.9204
1440 minute summer	3A	10	50 0.7	74 122.2	1815.6390
1440 minute summer	3B	10	80 0.7	76 102.8	1520.9450
960 minute summer	3 (PR)	6	00 0.75	53 99.2	113.7122
960 minute summer	4A	7	35 0.7	70 56.6	554.1972
2880 minute summer	4 (PR)	18	00 0.72	15 92.9	108.6410
1440 minute summer	OUTFAL	L 10	20 0.10	00 90.3	0.0000
Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (PR)	11.6	
1440 minute summer	2B	1.000	2 (PR)	17.9	
960 minute summer	2 (PR)	1.001	3 (PR)	36.8	
1440 minute summer	ЗA	3.000	3 (PR)	21.3	
1440 minute summer	3B	4.000	3 (PR)	17.9	
960 minute summer	0 (00)	1.002	4 (PR)	81.1	
960 minute summer	3 (PR)	1.002	4 (FN)	01.1	
960 minute summer	3 (PR) 4A	5.000	4 (PR) 4 (PR)	8.8	
	• •		. ,	8.8	10684.8

JE	BA sulting	JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Areas 2, 3, 4 PB 10/05/2023	Page 9		
Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%						

Node Event	US	Pea		Depth	Inflow	Node
	Node	(mir	ıs)	(m)	(l/s)	Vol (m³)
1440 minute summer	2A	10	80	1.000	78.9	1174.6780
1440 minute summer	2B	11	10	1.000	126.7	1960.7690
960 minute summer	2 (PR)	7	05	0.998	72.8	381.2310
1440 minute summer	ЗA	11	10	1.000	150.8	2344.0520
1440 minute summer	3B	11	10	1.000	126.9	1960.4870
960 minute summer	3 (PR)	6	75	0.995	104.5	150.2181
960 minute summer	4A	7	65	0.999	70.4	719.1832
4320 minute summer	4 (PR)	27	60	0.991	92.7	150.6135
480 minute summer	OUTFAL	L 2	88	0.100	90.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		1	Vode	(l/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (PR)	11.6	
1440 minute summer	2B	1.000	2 (PR)	17.8	
960 minute summer	2 (PR)	1.001	3 (PR)	36.8	
1440 minute summer	3A	3.000	3 (PR)	21.3	
1440 minute summer	3B	4.000	3 (PR)	17.8	
960 minute summer	3 (PR)	1.002	4 (PR)	81.1	
960 minute summer	4A ,	5.000		PR)	8.8	
4320 minute summer	4 (PR)	1.003		JTFALL	90.3	15669.2

JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-X Network: Drainage PB 10/05/2023		4-SO-PO1. Page 1	
	Simulation Sett	<u>ings</u>		
M5-60 (mm) 16 Ratio-R 0.2 Summer CV 1.0	R otland and Ireland .400 274 000 etailed	Drain [Additiona Check	Skip Steady State Down Time (mins) al Storage (m³/ha) Discharge Rate(s) Discharge Volume	x 240 0.0 x x
156018036030120240480	Storm Duratic 600 960 720 1440	ons 2160 2880	4320 7200 5760 8640	10080
	-	tional Area	Additional Flow	
(years) 1	(CC %) 20	(A %) 10	(Q %) 0	
2	20	10	0	
5 10	20 20	10 10	0 0	
30	20	10	0	
100	20	10	0	
Nod	<u>e 5A Online Hydro-B</u>	rake® Contr	<u>ol</u>	
Flap Valve x		Objective	(HE) Minimise up	stream storage
Replaces Downstream Link x		p Available		
Invert Level (m) 68.000 Design Depth (m) 1.000	Produ Min Outlet Dia	ct Number ameter (m)	CTL-SHE-0139-90 0.225	000-1000-9000
Design Flow (I/s) 9.0	Min Node Dian	neter (mm)	1200	
<u>Node</u>	<u>5 (PR) Online Hydro</u>	Brake [®] Con	<u>trol</u>	
Flap Valve x Replaces Downstream Link x Invert Level (m) 67.000 Design Depth (m) 1.000 Design Flow (l/s) 12.3		. ,	(HE) Minimise up ✓ CTL-SHE-0160-12 0.225 1200	-
Nod	e 5A Depth/Area Sto	rage Structu	re	
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000		2.0 1.00 T	Invert Lev ime to half empty	
Depth Are (m) (m ² 0.000 959	²) (m²) (r	pth Area n) (m²) 000 959.0	Inf Area (m²) 0.0	
Node	5 (PR) Depth/Area St	orage Struct	ure	
Base Inf Coefficient (m/hr) 0.0000 Side Inf Coefficient (m/hr) 0.00000		2.0 1.00 T	Invert Lev ime to half empty	
Depth Are (m) (m ² 0.000 150	²) (m²) (r	pth Area n) (m²) 000 150.0	Inf Area (m²) 0.0	

JBA	JBA Consulting Unit 24, Grove Island	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 5	Page 2
consulting	Corbally Limerick	PB 10/05/2023	
		· ·	

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		eak nins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	5A		930	0.346	27.8	331.5821
960 minute summer	5 (PR)		585	0.330	16.6	49.4844
960 minute summer	OUTFA	LL	585	0.068	12.2	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (I	PR)	9.0	
960 minute summer	5 (PR)	1.001	OU	TFALL	12.2	502.7

JBA consulting	JBA Consulting Unit 24, Grove Island	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 5	Page 3
consulting	Corbally Limerick	PB	
	LITTETICK	10/05/2023	L

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		eak nins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	5A		930	0.417	32.2	399.4253
960 minute summer	5 (PR)		600	0.391	18.1	58.6716
960 minute summer	OUTFA	LL	600	0.068	12.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (I	PR)	9.0	
960 minute summer	5 (PR)	1.001	OU	ITFALL	12.3	546.7

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 4
JBA	Unit 24, Grove Island	Network: Drainage Area 5	
consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		eak nins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	5A	·	960	0.510	37.8	489.3045
960 minute summer	5 (PR)		615	0.482	19.9	72.3661
240 minute summer	OUTFA	LL	264	0.068	12.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (PR)	9.0	
960 minute summer	5 (PR)	1.001	OU	ITFALL	12.3	582.3

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 5 PB	Page 5
	Limerick	10/05/2023	

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		ak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	5A	, c	990	0.597	42.6	572.6187
960 minute summer	5 (PR)	6	530	0.570	21.3	85.5392
2880 minute summer	OUTFA	LL 18	300	0.068	12.3	0.0000
Link Event	US Node	Link		DS ode	Outflow	Discharge
(Upstream Depth) 1440 minute summer	5A	1.000	5 (F		(l/s) 9.0	Vol (m³)
960 minute summer	5 (PR)	1.000	0U	TFALL	12.3	606.1

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 5 PB 10/05/2023	Page 6				
	Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%						

Node Event	US Node		ak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	5A	10	080	0.776	51.6	743.7120
720 minute summer	5 (PR)		525	0.753	27.0	113.0159
60 minute summer	OUTFA	LL 1	134	0.068	12.3	0.0000
Link Event (Upstream Depth) 1440 minute summer	US Node 5A	Link 1.000	N 5 (1	DS Iode PR)	Outflow (l/s) 9.0	Discharge Vol (m³)
720 minute summer	5 (PR)	1.001	οÙ	ITFALL	12.3	500.8

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 5 PB 10/05/2023	Page 7			
Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%						

Node Event	US	Pe	eak	Depth	Inflow	Node
	Node	e (m	ins)	(m)	(l/s)	Vol (m³)
1440 minute summer	5A	1	110	1.000	63.7	958.5212
960 minute summer	5 (PR)		675	0.996	27.5	149.3266
30 minute summer	OUTFA	LL	25	0.068	12.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (PR)	9.0	
960 minute summer	5 (PR)	1.001	OU	ITFALL	12.3	636.8

JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-X Network: Drainage PB 10/05/2023		4-SO-PO1. Page 1			
	Simulation Sett	<u>ings</u>				
Rainfall MethodologyFSRFSR RegionScotland and IrelandM5-60 (mm)16.400Ratio-R0.274Summer CV1.000Analysis SpeedDetailed			Skip Steady State x Drain Down Time (mins) 240 Additional Storage (m³/ha) 0.0 Check Discharge Rate(s) x Check Discharge Volume x			
156018036030120240480	Storm Duratic 600 960 720 1440	ons 2160 2880	4320 7200 5760 8640	10080		
Return Period Cli (years)	-	ional Area (A %)	Additional Flow (Q %)			
1	20	10	0			
2 5	20 20	10 10	0 0			
10	20	10	0			
30	20	10	0			
100	20	10	0			
Noc	<u>e 6A Online Hydro-B</u>	<u>rake® Contr</u>	ol			
Flap Valve x		Objective	(HE) Minimise ups	tream storage		
Replaces Downstream Link x		p Available		0 1000 1650		
Invert Level (m) 67.000 Design Depth (m) 1.000	Min Outlet Dia	ct Number ameter (m)	CTL-SHE-0182-165 0.225	0-1000-1650		
Design Flow (I/s) 16.5	Min Node Diam	· ,	1500			
Node	<u>6 (PR) Online Hydro</u>	Brake [®] Con	<u>trol</u>			
Flap Valve x		Objective	(HE) Minimise ups	tream storage		
Replaces Downstream Link x	Sum	p Available	\checkmark	i cum storage		
Invert Level (m) 66.000		ct Number	CTL-SHE-0185-171	0-1000-1710		
Design Depth (m) 1.000 Design Flow (l/s) 17.1	Min Outlet Dia Min Node Dian	. ,	0.225 1500			
Nod	e 6A Depth/Area Sto	rage Structu	re			
		-				
Base Inf Coefficient (m/hr) 0.0000 Side Inf Coefficient (m/hr) 0.00000	,	2.0 1.00 T	Invert Leve ime to half empty (n			
Depth Are			Inf Area			
(m) (m² 0.000 1796		n) (m²))00 1796.4	(m²) 0 0.0			
Node	6 (PR) Depth/Area St	orage Struct	ture			
				l (m) 66.000		
Base Inf Coefficient (m/hr) 0.0000 Side Inf Coefficient (m/hr) 0.00000		2.0 1.00 T	Invert Leve ime to half empty (n			
Depth Ar	ea Inf Area De	pth Area	Inf Area			
(m) (m	²) (m ²) (r	n) (m²)	(m²)			
0.000 20	.0 0.0 1.0	000 20.0	0.0			

JBA	JBA Consulting Unit 24, Grove Island	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 6	Page 2
consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node		eak nins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	6A		930	0.355	51.1	638.2138
960 minute summer	6 (PR)		600	0.317	17.2	6.3352
960 minute summer	OUTFA	LL	600	0.053	17.0	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	6A	1.000	6 (PR)	16.5	
960 minute summer	6 (PR)	1.001	OU	JTFALL	17.0	736.6

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 3
JBA	Unit 24, Grove Island	Network: Drainage Area 6	
JBA consulting	Corbally	РВ	
	Limerick	10/05/2023	
		· · ·	

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node		eak nins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	6A		, 930	0.424	59.2	762.3869
960 minute summer	6 (PR)		585	0.364	17.7	7.2817
960 minute summer	OUTFA	LL	585	0.053	17.1	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	6A	1.000	6 (PR)	16.5	
960 minute summer	6 (PR)	1.001	OU	ITFALL	17.1	806.6

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 4
BA	Unit 24, Grove Island	Network: Drainage Area 6	
isulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node		eak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	6A		960	0.517	69.5	928.6901
720 minute summer	6 (PR)	4	465	0.439	18.6	8.7725
1440 minute summer	OUTFA	LL ·	780	0.053	17.1	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	ode	(l/s)	Vol (m³)
1440 minute summer	6A	1.000	6 (F	PR)	16.5	
720 minute summer	6 (PR)	1.001	OU	TFALL	17.1	680.6

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 5
JBA	Unit 24, Grove Island	Network: Drainage Area 6	
JBA consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (mir		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	6A	9	90	0.602	78.4	1081.5930
960 minute summer	6 (PR)	6	00	0.532	18.6	10.6482
720 minute summer	OUTFAL	L 6	00	0.053	17.1	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	ode	(l/s)	Vol (m³)
1440 minute summer	6A	1.000	6 (I	PR)	16.5	
960 minute summer	6 (PR)	1.001	OU	TFALL	17.1	847.5

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 6
	Unit 24, Grove Island	Network: Drainage Area 6	
JBA consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (mir		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	6A	10	80	0.777	95.0	1395.3070
240 minute summer	6 (PR)	4	80	0.943	22.6	18.8697
60 minute summer	OUTFAL	L 1	03	0.053	17.1	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	6A	1.000	6 (I	PR)	16.5	
240 minute summer	6 (PR)	1.001	OU	ITFALL	17.1	368.0

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 7					
JBA	Unit 24, Grove Island	Network: Drainage Area 6						
consulting	Corbally	РВ						
	Limerick	10/05/2023						
Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%								

Node Event	US Node	Pea (mir		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	6A	11	10	1.000	117.2	1795.2080
1440 minute summer	6 (PR)	10	50	0.968	18.5	19.3594
60 minute summer	OUTFAL	L 2	87	0.053	17.1	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	6A	1.000	6 (PR)	16.5	
1440 minute summer	6 (PR)	1.001	Οι	JTFALL	17.1	1218.4

JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-X Network: Drainage PB 10/05/2023		4-SO-PO1. Page 1	
	Simulation Sett	ings		
M5-60 (mm) 16 Ratio-R 0.2 Summer CV 1.0	otland and Ireland .400 ?74	Drain [Addition Check	Down Time (mins) al Storage (m³/ha) (x 240 0.0 x x
156018036030120240480	Storm Duratic 600 960 720 1440	ns 2160 2880	4320 7200 5760 8640	10080
Return Period Clir (years)	-	ional Area (A %)	Additional Flow (Q %)	
1	20	(A %) 10	(Q %) 0	
2 5	20	10 10	0	
5 10	20 20	10 10	0 0	
30	20	10	0	
100	20	10	0	
Node	e 7A Online Hydro-B	rake® Contr	ol	
Flap Valve x		Objective	(HE) Minimise upst	ream storage
Replaces Downstream Link x		o Available	√	
Invert Level (m) 67.000 Design Depth (m) 1.000	Produ Min Outlet Dia	ct Number meter (m)	CTL-SHE-0171-142 0.225	0-1000-1420
Design Flow (I/s) 14.2	Min Node Diam	• •	1200	
Node	7 (PR) Online Hydro-	Brake [®] Con	trol	
Flap Valve x		Objective	(HE) Minimise upst	ream storage
Flap Valve x Replaces Downstream Link x	Sum	o Available	\checkmark	i cam storage
Invert Level (m) 66.000		ct Number	CTL-SHE-0174-148	0-1000-1480
Design Depth (m) 1.000 Design Flow (I/s) 14.8	Min Outlet Dia Min Node Diam	• •	0.225 1200	
Node	e 7A Depth/Area Stor	age Structu	<u>re</u>	
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	, ,	2.0 1.00 T	Invert Level ime to half empty (m	
Depth Area (m) (m²) 0.000 1533.	(m²) (r		Inf Area (m²) 0 0.0	
	I.			
<u>Node</u> .	7 (PR) Depth/Area St	orage Struct	ture	
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	· ·	2.0 1.00 T	Invert Level ime to half empty (m	
Depth Are (m) (m ² 0.000 14.	²) (m²) (r		Inf Area (m²) 0.0	
	1			

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 7 PB 10/05/2023	Page 2			
Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%						

Node Event	US Node		ak ins)	Depth (m)	Inflow (l/s)	Node Vol (m³)
1440 minute summer	7A	9	930	0.352	43.9	539.7116
960 minute summer	7 (PR)	ľ	585	0.340	14.9	4.7595
960 minute summer	OUTFA	LL S	585	0.072	14.6	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	7A	1.000	7 (PR)	14.2	
960 minute summer	7 (PR)	1.001	OL	JTFALL	14.6	643.5

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 3
JBA	Unit 24, Grove Island	Network: Drainage Area 7	
JBA consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		eak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	7A		930	0.422	50.9	646.5808
960 minute summer	7 (PR)		585	0.395	15.4	5.5362
960 minute summer	OUTFA	LL	585	0.073	14.8	0.0000
Link Event (Upstream Depth)	US Node	Link	N	DS Iode	Outflow (I/s)	Discharge Vol (m³)
1440 minute summer 960 minute summer	7A 7 (PR)	1.000 1.001	7 (I OU	PR) TFALL	14.2 14.8	701.4

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 7 PB 10/05/2023	Page 4		
Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%					

Node Event	US Node		ak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	7A	<u>c</u>	960	0.515	59.6	788.9893
720 minute summer	7 (PR)	Z	165	0.496	16.1	6.9393
360 minute summer	OUTFA	LL 2	216	0.073	14.8	0.0000
Link Event (Upstream Depth) 1440 minute summer	US Node 7A	Link 1.000		DS lode PR)	Outflow (l/s) 14.2	Discharge Vol (m³)
720 minute summer	7 (PR)	1.001	OU	, TFALL	14.8	591.0

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 5
Unit 24, Grove Island		Network: Drainage Area 7	
JBA consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		eak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	7A		990	0.600	67.3	919.3425
480 minute summer	7 (PR)		720	0.993	17.2	13.9029
120 minute summer	OUTFA	LL	88	0.073	14.8	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	7A	1.000	7 (PR)	14.2	
480 minute summer	7 (PR)	1.001	OU	ITFALL	14.8	447.5

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 7 PB	Page 6		
Limerick 10/05/2023 Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%					

Node Event	US Node	Pea (mir		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	7A	10	80	0.775	81.5	1188.5590
180 minute summer	7 (PR)	4	20	0.983	20.9	13.7665
60 minute summer	OUTFAL	L 1	19	0.073	14.8	0.0000
Link Event (Upstream Depth) 1440 minute summer	US Node 7A	Link 1.000	-	DS Dde R)	Outflow (I/s) 14.2	Discharge Vol (m³)
180 minute summer	7 (PR)	1.001	OUT	FALL	14.8	286.5

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 7 PB	Page 7		
Limerick		10/05/2023			
Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%					

Node Event	US Node	Pea (mii		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	7A	11	10	0.999	100.7	1532.0640
1440 minute summer	7 (PR)	10	20	0.997	16.1	13.9511
60 minute summer	OUTFAL	.L	38	0.073	14.8	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		١	lode	(l/s)	Vol (m³)
1440 minute summer	7A	1.000	7 (PR)	14.2	
1440 minute summer	7 (PR)	1.001	Οι	JTFALL	14.8	1060.9

Unit 24, Grove Island Network Corbally PB	: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Page 1 work: Drainage Area 8 05/2023
	Simulation Settings
Rainfall Methodology FSR FSR Region Scotland M5-60 (mm) 16.400 Ratio-R 0.274 Summer CV 1.000 Analysis Speed Detailed	Skip Steady State x d and Ireland Drain Down Time (mins) 240 Additional Storage (m³/ha) 0.0 Check Discharge Rate(s) x Check Discharge Volume x
	Storm Durations 00 960 2160 4320 7200 10080 20 1440 2880 5760 8640
Return Period Climate C (years) (CC 9 1 2 5 10 30 100	
Node 8A C	<u> Online Hydro-Brake® Control</u>
Design Flow (I/s) 13.2	Objective (HE) Minimise upstream storage Sump Available ✓ Product Number CTL-SHE-0165-1320-1000-1320 Min Outlet Diameter (m) 0.225 Min Node Diameter (mm) 1200 Depth/Area Storage Structure
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	Safety Factor2.0Invert Level (m)67.000Porosity1.00Time to half empty (mins)570
	nf Area Depth Area Inf Area (m ²) (m) (m ²) (m ²) 0.0 1.000 1451.0 0.0

	JBA Consulting Unit 24, Grove Island	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 8	Page 2		
JBA consulting	Corbally	PB			
Limerick		10/05/2023			
Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%					

Node Event	US Node		eak ins)	Depth (m)	Inflow (l/s)	Node Vol (m³)
1440 minute summer	8A		930	0.360	40.8	522.0942
1440 minute summer	OUTFA	ALL .	930	0.071	13.1	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	ode	(l/s)	Vol (m³)
1440 minute summer	8A	1.000	OU	TFALL	13.1	725.9

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.	Page 3
IBA	Unit 24, Grove Island	Network: Drainage Area 8	
JBA consulting	Corbally	РВ	
	Limerick	10/05/2023	
	1		

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US Node		eak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer 720 minute summer	8A OUTFA	, l	930 480	0.429 0.071	47.4 13.2	621.8341 0.0000
Link Event (Upstream Depth) 1440 minute summer	US Node 8A	Link 1.000	N	DS ode TFALL	Outflow (I/s) 13.2	Discharge Vol (m³) 821.0

JBA consulting	JBA Consulting Unit 24, Grove Island Corbally Limerick	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 8 PB 10/05/2023	Page 4			
Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%						

Node Event	US Node		eak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer 600 minute summer	8A OUTFA		, 960 345	0.520 0.071	(, ,	754.0192 0.0000
Link Event (Upstream Depth) 1440 minute summer	US Node 8A	Link 1.000		DS ode TFALL	Outflow (l/s) 13.2	Discharge Vol (m³) 880.0

	JBA Consulting	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01	Page 5
JBA	Unit 24, Grove Island	Network: Drainage Area 8	
JBA consulting	Corbally	PB	
	Limerick	10/05/2023	

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US Node		eak ins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer 240 minute summer	8A OUTFA	,	990 152	0.604 0.071	62.6 13.2	876.9419 0.0000
Link Event (Upstream Depth) 1440 minute summer	US Node 8A	Link 1.000	N	DS ode TFALL	Outflow (I/s) 13.2	Discharge Vol (m³) 892.6

consulting Corbally		File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 8 PB	Page 6			
Limerick 10/05/2023 Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%						

Node Event	US Node	Pea (mi		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer 60 minute summer	8A OUTFAI	10	80 60	0.777 0.071	75.9 13.2	1126.8420 0.0000
Link Event (Upstream Depth) 1440 minute summer	US Node 8A	Link 1.000	N	OS ode TFALL	Outflow (I/s) 13.2	Discharge Vol (m³) 862.5

JBA consulting	JBA Consulting Unit 24, Grove Island	File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 8	Page 7			
consulting	Corbally	PB				
	Limerick	10/05/2023				
	<u>Results for 100 year +20% CC +1</u>	0% A Critical Storm Duration. Lowest mas	<u>ss balance: 99.92%</u>			

Node Event	US Node	Pe (mi		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer 30 minute summer	8A OUTFA	11 LL	, 10 32	1.000 0.071	93.7 13.2	1450.5450 0.0000
Link Event (Upstream Depth) 1440 minute summer	US Node 8A	Link 1.000		DS Iode JTFALL	Outflow (I/s) 13.1	Discharge Vol (m³) 927.6

